STABILITY OF LAMINAR LIQUID FLOW
IN RECTANGULAR PIPES

R. S. Kuznetskii

The critical Reynolds numbers and maximal instability locations of laminar liquid flow in rectangu-
lar pipes are obtained theoretically as a function of the rectangle side ratio. The results are confirmed
experimentally.

The expression for the critical Reynolds number R for flow in a straight pipe [1] in dimensionless
form is

R 2 {w>
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and the local instability is minimal where supF{ul V§77 u|} is reached, Here x = s¢, y = s are Cartesian
coordinates at section F of the pipe (with controur I'); s is the hydraulic radius, angle brackets denote
averaging over F, the asterisk corresponds to loss of stability; the index 0 corresponds to a circular pipe
(in the following we assume R} = 2300 [2, 3], which corresponds to an overall pipe criterion q [1] of
about 885).

For rectangular pipes (|x | <a, |y | < b) the shape F is characterized by the parameter k = b /a so
that r = r(k). Without limiting generality we shall assume k = 1 and examine the first quadrant 0 =< x < q,
0 =y = b. In this case the boundary conditions take the form

k 14k, 8 3
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The quantity u ]vg u| , in addition to its absolute maximum supF{ulvgnul} for x=0, y=y« (0<yx<b;
we assume k < 1), may aylso have a relative maximum for y=0, x=x+ (0 <X, <a). Correspondingly,
the absolute and relative minima of (uy{u|V nu[} -1 lead to the Reynolds numbers R« (critical)and
Rxx >R, corresponding to the onset of instability at the noted points; R« , Rxx , y«, and x,, as functions
of k are to be determined.

The appearance of the second of the instability zones x ~ 0, y ~y4 (R 2 Ry); X ~ X, 4,y ~O0 R 2
R, 4 ), Sserving as an additional isolated turbulization source, in the case of an extended laminar regime
causes marked increase (the larger, the larger is k) of the probability of general turbulization of the flow.
The situation for an annular tube was similar [1].

In contrast with the pipe sections examined previously [1] in the rectangular pipe case there is no
finite analytic expression for u [3]. The calculation becomes correspondingly more complicated, primari-
ly owing to the need for numerical integration of (1).

The numerical solution of the Poisson equation (1) by the difference method using the boundary con~
ditions (2) with subsequent calculation of {u) {u[Vgy, u|}™1 at the grid nodes and selection of the minimal
value was carried out on a Minsk-22 computer, To obtain the grid each half of the rectangle sides was di-
vided for k > 0.1 into 32 equal parts; for k = 0.1 they were divided respectively into 85 and 24 parts. The
iterations were terminated as soon as the discrepancy in u became less than 2723 ~ 1.2 - 10 "; in this case
0.08 s (u) £0.14, 0.12 < u, < 0.29. The computation of each version with a definite initial value of k
required about three hours. Twenty versions were computed in all, The basic results of the calculation
are shown in Figs. 1, 2, and 3.
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The quantity r(k) decreases from the maximal value r(0) = i 3 (flat
f [ channel) [1] to the minimal value r(0.6255) ~ 0,7186 and then increases some-

Ty what to r(1) = 0.7981 (square section). Tt appears that the flow in the pipe is
\‘Z\ more stable (r is larger}, the more uniform is the distribution of u in ¥ (i.e.,
J the more the measurements of the rectuangular section differ) or the more
\ W nearly symmetrical is the distribution (the closer the rectangle is to a

square), Therefore we can expect, for example, that for sections in the form
- D S s = of regular n-gons (n = 3) r(r< 1 {41} is a monotonically increasing function of
n which approaches 1 as n =,

The value r = r(1) is also reached for k = 0.366. Thus the inverse de-
pendence r(k) on the segment 0.366 = k < 1 js two-valued, Wenote thatr =1
(R« =RY) for k~ 0,182,

Fig. 3

Figure 1 also shows the experimental points of Schiller [5], Davies and White [6], Cornish [7],
Nikuradse [4], and Lea and Tadros [8], denoted by numerals 1-5. The points are taken directly from the
curves of pipe resistance versus R obtained by the experimenters with account for the influence of the
initial disturbance intensity and the entrance segment length [3]. However, for more intense and diverse
initial disturbances Ry would be somewhat smaller. Considering this, we can state that the agreement
between the experimental and theoretical results is fairly good.

The function ry(k) = R, /R} decreases monotonically to the value ry(l) = vr(1). Wenote that ry = 1
and 4/3 respectively for k = 0.660 and 0.440.

The relative distance (y,/b) between the absolute minimum stability point and the center of the rec-
tangle is always less than the relative distance (x4 x /@); y4 /b with increase of k increases monotonically
from 1/V'3 = 0.5773 for the flat channel {1] with k = 0 to 0.625 for the square tube with k =1, Corres-
pondingly, x4 x /@ decreases monotonically from 1 to 0.625.
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